IEEE-1588 PTP Gran Maestro - DTS 4163
IEEE-1588 PTP Gran Maestro - DTS 4163
El DTS 4163.grandmaster es un gran maestro PTP diseñado específicamente para subestaciones digitales según IEC 61850. Con su alta precisión y su funcionamiento redundante sin fisuras, ofrece un alto grado de fiabilidad y disponibilidad.
Gran maestro PTP para subestaciones digitales IEC 61850
El DTS 4163 es un reloj de tiempo de referencia primaria(PRTC) y gran maestro PTP según IEEE 1588-2008 / PTPv2, con compatibilidad IEEE 1588-2019/ PTPv2.1, para la sincronización de alta precisión de los clientes.
Soporte PRP/HSR
El DTS 4163 dispone de un par de interfaces redundantes(PRP/HSR) para conectar directamente el dispositivo como un DAN (nodo dual conectado) con un ancho de banda completo de 1 Gbps.
Gigabit Ethernet completo
Ofrece 4 puertos Gigabit Ethernet totalmente compatibles con PTP (RJ45 o SFP), cada uno de ellos compatible con configuraciones de 1 paso/2 pasos, multidifusión/unicast, IPv4/IPv6, capa 2 y dominio/perfil independiente, lo que resulta ideal para las redes segmentadas modernas.
Seguridad cibernética
Diseñado pensando en la seguridad, el sistema cuenta con arranque seguro, datos de usuario cifrados y firmware firmado. Admite el acceso seguro a través de SSH, SCP, SFTP y HTTPS (próximamente), de acuerdo con las normas IEC 62443-4-2.
Servidor NTP de alto rendimiento
El DTS 4163 puede responder a más de 10’000 solicitudes NTP y SNTP por segundo (hasta 600’000 clientes dependiendo de la configuración del cliente NTP).
Receptor GNSS
El DTS 4163 puede recibir simultáneamente todos los sistemas GNSS L1 (GPS+QZSS/SBAS, Galileo, GLONASS, BeiDou), garantizando la máxima precisión y disponibilidad.
Capacidad dereloj fronterizo
El DTS 4163 puede utilizarse como reloj fronterizo para establecer puentes entre diferentes dominios horarios utilizando dos servidores PTP externos y servir hasta a otros cuatro dominios con clientes.
Opciones de oscilador
El DTS 4163 ofrece diferentes opciones de oscilador, lo que permite mejorar el rendimiento del holdover y la estabilidad a largo plazo adaptándose a las necesidades de la aplicación.
Salidas heredadas
Las salidas del DTS 4163 admiten muchas señales heredadas como IRIG, ToD, DCF, pulso y frecuencia.
Sistema de gestión de red
El DTS 4163.grandmaster puede supervisarse, configurarse y controlarse por completo mediante el software Mobatime Network Management System(MOBA-NMS).
| Tipo de oscilador: | TCXO / OCXO / Rubidio |
|---|---|
| Interfaz de red: | 4x 100/1000BaseT (LAN 1-4) o 4x SFP para módulo miniGBIC l, 1x 100/1000BaseT (LAN 5) gestión |
| Características de la red: | PTP gran maestro / SyncE maestro / NTP V4/V3, servidor (RFC 5905/1305) / SNTP (RFC 4330), Configuración IP: IPv4 (DHCP, IP estática), IPv6 (autoconfiguración, DHCPv6, IP estática), Agregación de enlaces (IEEE 802.3ad) sobre 2 / interfaces LAN dedicadas (LAN 2 y 3), VLAN: priorizada (IEEE 802.1p), etiquetadas (IEEE 802.1Q), Enrutamiento estático, IGMP / Multicast (RFC 3376, 1112, 4601, 3973), Autenticación de usuarios con Radius (RFC 2865), LDAP (RFC 4511) y LDAP seguro (RFC 4513) |
| Entradas de señal de referencia | 1x entrada RF GNSS (para antena GNSS) a receptor GNSS interno, 92 canales, seguimiento, sensibilidad -167 dBm, 2x PTP (de otro gran maestro PTP, como esclavo PTP), 1x bucle de corriente DCF (p. ej. GNSS 4500), 2x F-IN (1 PPS, 10 MHz, 2,048 MHz) (sólo para mejora de hold-over) |
| Salidas de señal de referencia (red) | PTP gran maestro (E2E, P2P, 1 paso, 2 pasos, multidifusión, capa 2, IPv4/IPv6) (LAN 1-4), perfiles PTP: por defecto E2E/P2P; utilidad de alimentación (IEEE/IEC 61850-9-3); telecomunicación ITU-T G.8265.1, G.8275.1, G.8275.2; gPTP IEEE 802.1AS, maestro SyncE, ESMC (SSM), servidor NTP (>10'000 peticiones/segundo en los 4 puertos combinados), modo NTP: Servidor, Peer, Broadcast, Multicast / SNTP / Autenticación MD5 y SHA1 para NTP, TIME (RFC 868), DAYTIME (RFC 867) |
| Salidas de señal de referencia (no de red) | 3/4x salida de impulsos/frecuencia/señal de precisión, (1PPS a 10 MHZ o IRIG-B 00x), 1x IRIG-B-12x AM analógica, 1x ToD, 2x salida serie, RS-422, 2x conmutador de eventos configurable, 2x timestamper de eventos |
| Perfiles PTP | Perfiles por defecto: E2E IEEE 1588-2008, P2P IEEE 1588-2008 | Perfiles de potencia: IEEE C37.238-2011, IEEE C37.238-2017, IEC/IEEE 61850-9-3 | Perfiles Telecom: ITU-T G.8265.1, ITU-T G.8275.1, ITU-T G.8275.2 | AVB/TSN: IEEE 802.1AS |
| Alarmas | Interruptor eléctrico: contacto de relé, Salidas de red (LAN 1-5): Notificaciones SNMP (Traps) V2c, Correo (RFC 4954, 2195), LED de alarma, Syslog (RFC 5424) |
| Gestión y supervisión | MOBA-NMS; posibilidad de monitorización, Menú de terminal: Terminal USB-C, SSH, SNMP (v1/v2c/v3), SNMPv3 con autenticación y cifrado, Syslog (RFC 5424), Descarga del firmware del sistema a través de SCP, SFTP o USB, LEDs: Alarma, Alimentación, Sincronización, Próximamente: interfaz web |
| Seguridad | Seguro por diseño: seguridad basada en hardware (arranque seguro), datos de usuario cifrados, imagen de firmware cifrada y firmada, Acceso seguro al dispositivo con SSH, SCP, SFTP, HTTPS (próximamente), Funciones de seguridad según IEC 62443-4-2 |
| Dimensiones: | 222 x 44 x 222 mm (Con kit de rack: 483 x 44 x 222 mm, 19'', 1U) |
|---|---|
| Peso | Aprox. 2,0 kg (según versión) |
| Material de la carcasa | Acero (recubierto de polvo) |
| Grado de protección | IP 20 |
| Temperatura de funcionamiento | -20 - 50 °C |
| Humedad de funcionamiento | 5 - 95% relativo, sin condensación |
| Refrigeración | Opciones de refrigeración activa o pasiva (sin ventilador) disponibles |
| Alimentación | Según la versión |
| Conformidad | El DTS 4163.grandmaster cumple las siguientes homologaciones de organismos: CE, UKCA, CB, RoHS, WEEE, CEM: IEC 61850-3, IEC 61000-3-2, 61000-3-3, IEC 61000-6-2, 61000-6-4, Seguridad: IEC 62368-1 |
| Precisión, interna (valores típicos) | GNSS a tiempo interno: < +/- 50 ns, PTP a tiempo interno: < +/- 50 ns, DCF a tiempo interno (con GNSS 4500): < +/- 50 ns (después de compensar el desfase del fijo), F-In a tiempo interno: < +/- 50 ns (sólo frecuencia) |
| Precisión, salida de la señal horaria (valores típicos) | GNSS a NTP: < +/- 100 μs, GNSS a pulso/frecuencia: < +/- 50 ns, GNSS a IRIG (AM): < +/- 200 μs, GNSS a IRIG (DC): < +/- 50 ns, GNSS a salida serie: < +/- 10 ms (Jitter <10 ms) |
Leaflets
Manuals
HSR (High-availability Seamless Redundancy) is a fault-tolerant Ethernet protocol specified in IEC 62439-3, designed for applications where continuous data transmission is critical. It operates using a ring or mesh topology, where each node simultaneously sends duplicate Ethernet frames in both directions. This ensures that even if one link fails, the other path still delivers the data with zero recovery time, making HSR highly suitable for real-time, mission-critical systems such as substation automation, industrial control, and transportation.
A key difference between HSR and PRP (Parallel Redundancy Protocol) lies in their network topology and implementation approach:
-
HSR uses a single network infrastructure with a ring or mesh configuration, allowing for compact or space-constrained installations without the need for separate switches or links. Each device must be HSR-capable and interconnected in the ring.
-
PRP, by contrast, requires two completely separate LANs (LAN A and LAN B), with each device transmitting duplicate frames over both networks.
Only few devices like the DTS 4163.grandmaster support both HSR and PRP protocols as defined in IEC 62439-3. This allows the device to be used in a range of redundant network configurations, including HSR ring topologies, PRP dual-network setups, and in some cases, hybrid environments.
PRP (Parallel Redundancy Protocol) is a fault-tolerant Ethernet protocol defined in IEC 62439-3. It ensures zero recovery time by transmitting identical Ethernet frames simultaneously over two separate and independent LANs—referred to as LAN A and LAN B. Each PRP-capable device uses two network interfaces and remains fully operational even if one of the networks fails. The receiving device accepts the first-arriving frame and discards the duplicate, avoiding retransmissions or delays and maintaining uninterrupted communication.
Compared to HSR (High-availability Seamless Redundancy), PRP offers full physical separation of network paths, which provides enhanced fault isolation and the ability to reuse existing network infrastructure. However, this comes at the cost of double the cabling, switches, and ports, which can increase system complexity and space requirements.
-
PRP is ideal for larger or existing installations where dual independent networks are already in place or where redundancy with maximum physical separation is required.
-
HSR, in contrast, uses a single-ring or mesh topology and achieves redundancy by sending duplicate frames in opposite directions through the same network infrastructure, making it more suitable for compact, distributed systems.
Only few devices like the DTS 4163.grandmaster support both HSR and PRP protocols as defined in IEC 62439-3. This allows the device to be used in a range of redundant network configurations, including HSR ring topologies, PRP dual-network setups, and in some cases, hybrid environments.
PTP profiles are standardized sets of configuration parameters tailored to specific industries or use cases. For example:
- The Power Profile (IEC 61850-9-3) is used in substations and utility automation, prioritizing reliability and deterministic behavior.
- The Telecom Profiles (ITU-T G.8275.1 and G.8275.2) are used in mobile networks for phase and frequency synchronization.
These profiles ensure interoperability and simplify deployment within each domain.
The Precision Time Protocol (PTP), defined by IEEE 1588, is a network protocol that synchronizes clocks throughout a network with sub-microsecond accuracy. It is critical in applications where precise timing is essential, such as energy systems, industrial automation, financial trading, and broadcasting. PTP achieves this high accuracy through hardware timestamping and delay compensation techniques.
Such considerations are important for hierarchically structured time server structures. The stratum level “0” always refers to the time server on the top level, which functions as the reference time source of the overall system, for example, by means of exact DCF / GPS synchronization. The level below, along with the time servers located there – which in turn synchronize themselves to level «0» – is given the stratum level «1» accordingly. Levels further below therefore add up the stratum level “n + 1”. As a rule, a maximum of 16 stratum levels are defined.
You’ll find it directly on the license web site – After entering the license number and filling out the registration form you will be able to download the license file and the newest MOBA-NMS software 32-bit or 64-bit version.
Link to the license page: https://nms-webportal.mobatime.com/license/login
To get a valid license you need to order a MOBA license from us. As soon as we receive the request, we will send you a PDF including the license key. In the PDF you will find a link, which leads to a landing page of us, which asks you to enter the license key. As soon as you have entered the key, your license is activated.
ATTENTION: a license is only for one workstation and should be activated by the responsible employee.
As a rule, NTP clients send a request packet every 64 seconds at most. With a device code of 100 “requests per second”, 6,400 NTP clients could already be synchronized in the network. For example, if you use the DTS 4160 time server with 10,000 «requests per second», there are even 640,000 clients that could be synchronized with this type of time server in the network. Since more current NTP versions increase the polling interval by a factor of 16 with stable time synchronization, this results in an even greater number of possible NTP end devices. One should therefore take this fact into account when selecting the device specification that is really necessary for the specific need. For larger networks, it is also common that hierarchical time server structures – consisting of several network segments or levels, each with an assigned time server – are created. In this way, the time servers of the lower level always synchronize to the higher level right down to the central time server. This central time server typically has the highest performance features and is often redundant.
Our tutorial videos will help you with the procedure for commissioning a DTS device in a network without dynamic IP address assignment DHCP. You will be shown how to make the settings on the DTS device and how to assign the IP address.
What is supplied by MOBATIME?
- DTS device (e.g. DTS 4801.masterclock)
- Rack mounting material
- Terminal opener-tool
What do you need to be ready?
- PC or Laptop
- Switch
- Serial cable (SUB.D9 pole, 0-modem (crossed))
- USB Serial Adapter (only if you don’t have a serial input on your device)
- Power cable
- Network (LAN) cable
You need to download the following software:
- PuTTY
- MOBA NMS !Attention, you need a valid license! (How to I get a valid MOBA-NMS licence?)
Below you will find our six tutorial videos that will help you complete the initial installation:
- Identify PC COM Port
- Open PuTTY
- Configuration of DTS Menu IP in PuTTY
- Define PC/Laptop IP
- Add Single Device in MOBA-NMS
- Select synchronization source in MOBA-NMS